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Mathematical local stability analysis 

Previous studies have proved the stability criteria of random community matrix comprised of each 

interaction type (predator-prey, mutualism, and competition) and all interaction types [1, 2] 

 

Communities with a single interaction type 

Community matrix, J, is a linear dynamic equation at an equilibrium point with elements. The system is 

locally stable if all J eigenvalues have negative real parts. Given the distribution assumptions from which 

interaction strengths are drawn [Jij takes the value of a random variable X with mean E(X) = 0 and 

variance V(X) = σ2], for large N, the stability conditions of random communities with predator-prey, 

mutualism, or competitive interactions follow Allesina and Tang (2012), respectively [1]: 
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where d is the mean of self-regulations si.  

 Extreme interactions where one sign is close to zero (nearly unilateral interaction) in each 

interaction community were examined. In predator-prey communities the correlation of pairwise 

interactions E(JijJji) ( ji  ) becomes zero and C = C/2. The stability condition then changes to: 
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This indicates that asymmetry of interaction strengths in predator-prey communities [(+ 0) or (−0)] 

destabilizes the system, because the stability condition is more restrictive in (S2) than in (S1-a). For 

example, assuming that X follows a normal distribution n(0, σ2), then
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/)( 22 XE . In this case, the 

left-hand sides of (S1-a) and (S2) are about NC36.0 and NC71.0 , respectively. 



 In a similar way, when one interaction sign is close to zero in a mutualistic or competitive 

community, by using E(JijJji) = 0 and C = C/2 we reach stable conditions in each community. 
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The condition (S3-a) clearly indicates that asymmetry of interaction strengths in mutualistic communities 

stabilizes the system, because the stability condition is wider in (S3-a) than in (S1-b). Because of the 

complexities of stability conditions in competitive communities, it was specifically assumed that X 

follows a normal distribution n(0, σ2), then 
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/)( 22 XE . In this case, the 

stability conditions of competitive communities without or with asymmetrical interaction signs are 

respectively given by the following inequalities (note that the second terms in the left-hand side of 

inequalities are negligible for the larger N): 
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This indicates that asymmetry of interaction strengths in competitive communities stabilizes the system, 

because the stability condition is wider in (S4-b) than in (S4-a). These results support the numerical 

simulations in the main text (Fig 1). 

 

Communities with unilateral interactions 

Consider the systems with only unilateral interactions (pu = 1). For randomly connected community with 

Jii  = −d = (−si Xi
*), E(Jij) = 0 and CN >> 1, the stability condition is given by: 
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[1]. In applying this stability condition to the present model, I assumed a random network with sufficient 

complexity (CN >> 1). Parameters and species abundance are set constant (cij = c, Aij = a, Xi
* = X* and si = 

s). I further assumed that it holds that c =  pCo(1 – pCo) so that E(Jij) = 0. The diagonal elements are given 

by Jii = –sX*. Given that pCo is not too close to one or zero, the off-diagonal elements are: 

 Jij = caX*,         (S6-a) 

 Jij = 0,          (S6-b) 

 Jij = –aX*,         (S6-c) 

 Jij =  0          (S6-d) 

for commensalist i and the comensalist’s partner j and amensalist i and amensalist’s partner j, occurring 

with probabilities, pCoC/2, pCoC/2, (1 − pCo)C/2 and (1 − pCo)C/2, respectively. Thus Var(Jij) and E(Jij Jji) 

are calculated as  

 Var(Jij) = X*2pCoC/2 + c2X*2(1 − pCo)C/2      (S7-a) 

 and 

 E(Jij Jji) = 0,          (S7-b) 

respectively. Substituting Eqns. (S6) and (S7) to Eqn, (S5), I have the stability condition for hybrid 

communities with unilateral interactions as: 
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This suggests that increasing the proportion of commensalistic interaction within a community 

monotonically increase the stability. This extreme analysis supports only case where parameter variations 

are extremely small (Fig. 2). 

 

Communities with all interaction types 

By extending the analysis of Allesina and Tang, [1] one can derive a stability criteria for communities 

comprised of all interaction types [2]. Given certain assumptions, the stability criteria can be defined as:  

 Max(re, rs) < d,         (S9) 

where 
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Noe that pa, pm, pc, pCo, and pAm are the proportion of antagonistic, mutualistic, competitive, 

commensalistic, and amensalistic interactions within a community, respectively. 

 To compare the stability of communities with only reciprocal interactions and only unilateral 

interactions, two extremes are considered, communities with only reciprocal interactions pu 0 and those 

with only unilateral interactions pu 1 as well as communities with perfectly balanced interaction types 

(pa= pm= pc and pCo = pAm). In both cases, rs = 0 although re is different in each extreme (pu 0 and pu

1): 

 re =
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This clearly indicates that communities with unilateral interactions are more stable than those with 

reciprocal interactions. It was also confirmed that communities with an unbalanced proportion of 

interaction types showed same tendency (see Fig 3 in the main text). 
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Supplemental Figures 

Fig. S1. Stability of communities with unilateral interactions (pu = 1) with varying proportions of 

commensalism pCo. (a) Effects of C, N was assumed to = 50. (b) Effects of N, C was assumed to = 0.2. 

Parameter values are s = 4.0 and σ= 0.5.  
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Fig. S2. Stability of communities with unilateral interactions (pu = 1) with varying proportions of 

commensalism pCo. (a) Effects of C, N was assumed to = 50. (b) Effects of N, C was assumed to = 0.2. 

Parameter values were randomly chosen from a uniform distribution (0 to 1) and s = 4.0. 
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Fig. S3. Stability of hybrid communities with reciprocal and unilateral interactions with varying 

proportions of the unilateral interaction pu. (a) Effects of C, N was assumed to = 50. (b) Effects of N, C 

was assumed to = 0.2. Parameter values are s = 4.0 and σ = 0.5. 
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Fig. S4. Stability of hybrid communities with reciprocal and unilateral interactions with varying 

proportions of the unilateral interaction pu. (a) Effects of C, N was assumed to = 50. (b) Effects of N, C 

was assumed to = 0.2. Parameter values were randomly chosen from a uniform distribution (0 to 1) and s 

= 4.0. 
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Fig. S5. Statistical quantities of off-diagonal elements of Jacobian matrix varying proportion of unilateral 

interactions. It was assumed that pa = pm = pc, and pCo = pAm. Parameter values are N = 50, C = 0.2, s = 

4.0, and σ = 0.3. Dotted lines indicate zero. The absolute values of correlation are extremely small (< 10-

5).  
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Fig. S6. Statistical quantities of off-diagonal elements of Jacobian matrix and stability of communities 

comprised of only reciprocal interactions (pu =0) with varying reduction rate of σ and magnitudes of Jij (i

≠ j). In (a-b) and (c-d), statistical quantities are changed without changing proportion of unilateral 

interactions  (pu =0), by reducing the absolute values of σ and Jij (i≠j), respectively. Red and blue dashed 

lines indicate values of standard deviation and absolute mean of Jij (i≠j) in communities comprised of 

only unilateral interactions (pu = 1.0 in Fig. S5). Black solid lines in (b) and (d) indicate community 

stability in communities comprised of only reciprocal interactions (pu =0). Black dashed lines indicate 

community stability in communities comprised of only unilateral interactions (pu = 1.0 in Fig. S5). Black 

circles indicates the points where each quantities in non-asymmetrical and perfect asymmetrical 

communities are same. The magnitudes of statistical quantities shown in communities with only unilateral 

interactions (black point in (c)) are not enough large to explain the stability (black point in (d)). The 

magnitudes of σ do not affect to stability. 
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Fig. S7. Mean dominant eigenvalue with varying asymmetry of interaction strengths f. Dotted line in 

panel (a) indicates zero line. Other information is same as Fig. 1. 
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Fig. S8. Mean dominant eigenvalue with varying with varying proportion of commensalism pCo. Dotted 

line in panel (a) indicates zero line. Other information is same as Fig. 2. 
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Fig. S9. Mean dominant eigenvalue with varying with varying variable proportions of unilateral 

interactions pu. Dotted line in panel (b) indicates zero line. Other information is same as Fig. 3. 
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Fig. S10. Effects of interaction strength asymmetry on stability of communities with reciprocal 

interactions (pu = 0). (a) Antagonistic community, (b) Competitive or mutualistic community. In the 

simulations, Jacobian Matrix is directly calculated following May’s approach (Methods). Parameter 

values are N = 50, C = 0.2, si = 1.0, and σ = 0.5.  
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Fig. S11. Stability of hybrid communities with reciprocal and unilateral interactions with variable 

proportions of unilateral interactions pu. (a) Effects of different community composition of the reciprocal 

interactions, balanced interactions, pa dominated, pm dominated, and pc dominated. Black, blue, red, and 

green dots indicate different proportions of reciprocal interactions, (pa, pm, pc) = (1/3, 1/3, 1/3), (0.6, 0.2, 

0.2), (0.2, 0.6, 0.2), and (0.2, 0.2, 0.6), respectively. (b) Effects of different community composition of the 

unilateral interactions, balanced interactions, pAm dominated, and pCo dominated. Black, purple, and 

orange dots indicate different unilateral interaction proportions, pCo = 0.5, 0.2, and 0.8, respectively. It 

was assumed that pa = pm = pc. In the simulations, Jacobian Matrix is directly calculated following May’s 

approach (Methods). Parameter values are N = 50, C = 0.2, si = 1.0, and σ = 0.5.  
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